Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Computational models of distributional semantics can analyze a corpus to derive representations of word meanings in terms of each word’s relationship to all other words in the corpus. While these models are sensitive to topic (e.g., tiger and stripes) and synonymy (e.g., soar and fly), the models have limited sensitivity to part of speech (e.g., book and shirt are both nouns). By augmenting a holographic model of semantic memory with additional levels of representations, we present evidence that sensitivity to syntax is supported by exploiting associations between words at varying degrees of separation. We find that sensitivity to associations at three degrees of separation reinforces the relationships between words that share part-of-speech and improves the ability of the model to construct grammatical sentences. Our model provides evidence that semantics and syntax exist on a continuum and emerge from a unitary cognitive system.more » « less
- 
            We present analysis of existing memory models, examining how models represent knowledge, structure memory, learn, make decisions, and predict reaction times. On the basis of this analysis, we propose a theoretical framework that characterizes memory modelling in terms of six key decisions: (1) choice of knowledge representation scheme, (2) choice of data structure, (3) choice of associative architecture, (4) choice of learning rule, (5) choice of time variant process, and (6) choice of response decision criteria. This framework is both descriptive and proscriptive: we intend to both describe the state of the literature and outline what we believe is the most fruitful space of possibilities for the development of future memory models.more » « less
- 
            Abstract We demonstrate that the key components of cognitive architectures (declarative and procedural memory) and their key capabilities (learning, memory retrieval, probability judgment, and utility estimation) can be implemented as algebraic operations on vectors and tensors in a high‐dimensional space using a distributional semantics model. High‐dimensional vector spaces underlie the success of modern machine learning techniques based on deep learning. However, while neural networks have an impressive ability to process data to find patterns, they do not typically model high‐level cognition, and it is often unclear how they work. Symbolic cognitive architectures can capture the complexities of high‐level cognition and provide human‐readable, explainable models, but scale poorly to naturalistic, non‐symbolic, or big data. Vector‐symbolic architectures, where symbols are represented as vectors, bridge the gap between the two approaches. We posit that cognitive architectures, if implemented in a vector‐space model, represent a useful, explanatory model of the internal representations of otherwise opaque neural architectures. Our proposed model, Holographic Declarative Memory (HDM), is a vector‐space model based on distributional semantics. HDM accounts for primacy and recency effects in free recall, the fan effect in recognition, probability judgments, and human performance on an iterated decision task. HDM provides a flexible, scalable alternative to symbolic cognitive architectures at a level of description that bridges symbolic, quantum, and neural models of cognition.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available